Electrothermal simulation of the self-heating effects in GaN-based field-effect transistors

نویسندگان

  • Valentin O. Turin
  • Alexander A. Balandin
چکیده

We report results of the analytical and numerical investigation of self-heating effects in GaN-based high-power field-effect transistors. The problem of heat transfer in a transistor structure has been solved both analytically, using the method of images, and numerically. Two-dimensional electrothermal simulations of the GaN metal-semiconductor field-effect transistors on SiC and sapphire substrate have been performed in a framework of the drift-diffusion model. Using the physical-based simulations, we studied the dependence of the hot-spot temperature on the gate-to-gate pitch in the transistors with multiple gate fingers. Particular attention has been paid to comparison of self-heating effects in GaN transistors on SiC and sapphire substrates. The obtained results can be used for optimization of the thermal design of the GaN-based high-power field-effect transistors. © 2006 American Institute of Physics. DOI: 10.1063/1.2336299

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-consistent electrothermal Monte Carlo simulation of single InAs nanowire channel metal-insulator field-effect transistors

Electron transport and self-heating effects are investigated in metal-insulator field-effect transistors with a single InAs nanowire channel, using a three-dimensional electrothermal Monte Carlo simulator based on finite-element meshing. The model, coupling an ensemble Monte Carlo simulation with the solution of the heat diffusion equation, is carefully calibrated with data from experimental wo...

متن کامل

Simulation of Self-Heating and Temperature Effect in GaN-based Metal-Semiconductor Field-Effect Transistor

Two-dimensional electro-thermal simulations of GaN-based metal-semiconductor fieldeffect transistor are performed in the framework of the drift-diffusion model. The dependence of the hot spot temperature in transistors with many gates on the gate-to-gate pitch is studied. The case of SiC substrate is compared to the case of sapphire substrate. The ambient temperature effect on transistor perfor...

متن کامل

Self-heating simulation of GaN-based metal-oxide-semiconductor high-electron-mobility transistors including hot electron and quantum effects

Undoped GaN-based metal-oxide-semiconductor high-electron-mobility transistors MOS-HEMTs with atomic-layer-deposited Al2O3 gate dielectrics are fabricated with gate lengths from 1 up to 40 m. Using a two-dimensional numerical simulator, we report the results of self-heating simulations of the GaN-based MOS-HEMTs, including hot electron and quantum effects. The simulated electrical characteristi...

متن کامل

The Effect of the Thermal Boundary Resistance on Self-Heating of AlGaN/GaN HFETs

The GaN materials system has established itself as being very important for the next generation of high-power density devices for optical, microwave, and radar applications [1] [2] [3] [4] [5]. At the same time, performance of these devices has been limited by self-heating [1] [6]. Thus, accurate modeling of heat diffusion and self-heating effects in AlGaN/GaN heterostructures and device optimi...

متن کامل

Self-heating effect modeling of a carbon nanotube-based fieldeffect transistor (CNTFET)

We present the design and simulation of a single-walled carbon nanotube(SWCNT)-based field-effect transistor (FET) using Silvaco TCAD. In this paper, theself-heating effect modeling of the CNT MOSFET structure is performed and comparedwith conventional MOSFET structure having same channel length. The numericalresults are presented to show the self-heating effect on the I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006